Derivations on dual triangular Banach algebras

author

  • Ahmad Minapoor Department of mathematics, Ayatollah Borujerdi University, Borujerd, Iran
Abstract:

Ideal Connes-amenability of dual Banach algebras was investigated in [17] by A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha. They studied weak∗continuous derivations from dual Banach algebras into their weak∗-closed two- sided ideals. This work considers weak∗-continuous derivations of dual triangular Banach algebras into their weak∗-closed two- sided ideals . We investigate when weak∗continuous derivations from these algebras into their weak∗-closed ideals are inner?

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Derivations on Banach Algebras

The separating space of a derivation onA is a separating ideal [2, Chapter 5]; it also satisfies the same property for the left products. The following assertions are of the most famous conjectures about derivations on Banach algebras: (C1) every derivation on a Banach algebra has a nilpotent separating ideal; (C2) every derivation on a semiprime Banach algebra is continuous; (C3) every derivat...

full text

Left Jordan derivations on Banach algebras

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.

full text

MODULE GENERALIZED DERIVATIONS ON TRIANGULAUR BANACH ALGEBRAS

Let $A_1$, $A_2$ be unital Banach algebras and $X$ be an $A_1$-$A_2$- module. Applying the concept of module maps, (inner) modulegeneralized derivations and  generalized first cohomology groups, wepresent several results concerning the relations between modulegeneralized derivations from $A_i$ into the dual space $A^*_i$ (for$i=1,2$) and such derivations  from  the triangular Banach algebraof t...

full text

Derivations of Commutative Banach Algebras

In [2] Singer and Wermer showed that a bounded derivation in a commutative Banach algebra 21 necessarily maps 21 into the radical 91. They conjectured at this time that the assumption of boundedness could be dropped. It is a corollary of results proved below that if 21 is in addition regular and semi-simple, this is indeed the case. What is actually proved here is that under the above hypothese...

full text

On the stability of generalized derivations on Banach algebras

We investigate the stability of generalizedderivations on Banach algebras with a bounded central approximateidentity. We show that every approximate generalized derivation inthe sense of Rassias, is an exact generalized derivation. Also thestability problem of generalized derivations on the faithful Banachalgebras is investigated.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  31- 40

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023